OpenJudge

01:联合权值

总时间限制:
1000ms
内存限制:
1024000kB
描述

无向连通图 G有  n个点,n-1条边。点从   1到  n依次编号,编号为  i的点的权值为   W

i

每条边的长度均为 1。图上两点(u, v)的距离定义为 u点到  v点的最短距离。对于图  G上的点

(u, v),若它们的距离为 2,则它们之间会产生Wu×Wv的联合权值。

请问图  G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权

值之和是多少?


输入
第一行包含 1个整数n。
接下来 n-1行,每行包含2个用空格隔开的正整数u、v,表示编号为u和编号为 v的点之间有边相连。
最后1行,包含n个正整数,每两个正整数之间用一个空格隔开,其中第i个整数表示图G上编号为i的点的权值为Wi。
输出
输出共1行,包含2个整数,之间用一个空格隔开,依次为图G上联合权值的最大值
和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。
样例输入
5 
1 2 
2 3 
3 4 
4 5 
1 5 2 3 10 
样例输出
20 74
提示
距离为 2的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。
其联合权值分别为 2、15、2、20、15、20。其中最大的是 20,总和为 74。
来源
NOIP2014
全局题号
10467
提交次数
0
尝试人数
0
通过人数
0